203 research outputs found

    Wavelength calibration for OSIRIS/GTC* tunable filters

    Full text link
    OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) is the first light instrument of the Gran Telescopio Canarias (GTC). It provides a flexible and competitive tunable filter (TF). Since it is based on a Fabry-Perot interferometer working in collimated beam, the TF transmission wavelength depends on the position of the target with respect to the optical axis. This effect is non-negligible and must be accounted for in the data reduction. Our paper establishes a wavelength calibration for OSIRIS TF with the accuracy required for spectrophotometric measurements using the full field of view (FOV) of the instrument. The variation of the transmission wavelength λ(R)\lambda(R) across the FOV is well described by λ(R)=λ(0)/1+(R/f2)2\lambda(R)=\lambda(0)/\sqrt{1+(R/f_2)^2}, where λ(0)\lambda(0) is the central wavelength, RR represents the physical distance from the optical axis, and f2=185.70±0.17f_2=185.70\pm0.17\,mm is the effective focal length of the camera lens. This new empirical calibration yields an accuracy better than 1\,\AA\ across the entire OSIRIS FOV (\sim8\arcmin×\times8\arcmin), provided that the position of the optical axis is known within 45 μ\mum (\equiv 1.5 binned pixels). We suggest a calibration protocol to grant such precision over long periods, upon re-alignment of OSIRIS optics, and in different wavelength ranges. This calibration differs from the calibration in OSIRIS manual which, nonetheless, provides an accuracy 1\lesssim1\AA\, for R\lesssim 2\arcmin.Comment: 22 pages, 7 figures, accepted for publication in PAS

    Supernova 2014J at M82 – II. Direct analysis of a middle-class Type Ia supernova

    Get PDF
    We analyze a time series of optical spectra of SN 2014J from almost two weeks prior to maximum to nearly four months after maximum. We perform our analysis using the SYNOW code, which is well suited to track the distribution of the ions with velocity in the ejecta. We show that almost all of the spectral features during the entire epoch can be identified with permitted transitions of the common ions found in normal SNe Ia in agreement with previous studies. We show that 2014J is a relatively normal SN Ia. At early times the spectral features are dominated by Si II, S II, Mg II, and Ca II. These ions persist to maximum light with the appearance of Na I and Mg I. At later times iron-group elements also appear, as expected in the stratified abundance model of the formation of normal type Ia SNe. We do not find significant spectroscopic evidence for oxygen, until 100 days after maximum light. The +100 day identification of oxygen is tentative, and would imply significant mixing of unburned or only slight processed elements down to a velocity of 6,000 km~s−1. Our results are in relatively good agreement with other analyses in the IR. We briefly compare SN 2011fe to SN 2014J and conclude that the differences could be due to different central densities at ignition or differences in the C/O ratio of the progenitors

    Arm and interarm abundance gradients in CALIFA spiral galaxies

    Get PDF
    Spiral arms are the most singular features in disc galaxies. These structures can exhibit different patterns, namely grand design and flocculent arms, with easily distinguishable characteristics. However, their origin and the mechanisms shaping them are unclear. The overall role of spirals in the chemical evolution of disc galaxies is another unsolved question. In particular, it has not been fully explored if the H ii regions of spiral arms present different properties from those located in the interarm regions. Here we analyse the radial oxygen abundance gradient of the arm and interarm star forming regions of 63 face-on spiral galaxies using CALIFA Integral Field Spectroscopy data. We focus the analysis on three characteristic parameters of the profile: slope, zero-point, and scatter. The sample is morphologically separated into flocculent versus grand design spirals and barred versus unbarred galaxies. We find subtle but statistically significant differences betweenthe arm and interarm distributions for flocculent galaxies, suggesting that the mechanisms generating the spiral structure in these galaxies may be different to those producing grand design systems, for which no significant differences are found. We also find small differences in barred galaxies, not observed in unbarred systems, hinting that bars may affect the chemical distribution of these galaxies but not strongly enough as to be reflected in the overall abundance distribution. In light of these results, we propose bars and flocculent structure as two distinct mechanisms inducing differences in the abundance distribution between arm and interarm star forming regions

    High-latitude forcing of diatom productivity in the southern Agulhas Plateauduring the past 350kyr

    Get PDF
    The hydrography of the Indian-Atlantic Ocean gateway has been connected to high-latitude climate dynamics by oceanic and atmospheric teleconnections on orbital and suborbital timescales. A wealth of sedimentary records aiming at reconstructing the late Pleistocene paleoceanography around the southern African continent has been devoted to understanding these linkages. Most of the records are, however, clustered close to the southern South African tip, with comparatively less attention devoted to areas under the direct influence of frontal zones of the Southern Ocean/South Atlantic. Here we present data of the composition and concentration of the diatom assemblage together with bulk biogenic content and the alkenone-based sea surface temperature (SST) variations for the past 350?kyr in the marine sediment core MD02-2588 (approximately 41°S, 26°E) recovered from the southern Agulhas Plateau. Variations in biosiliceous productivity show a varying degree of coupling with Southern Hemisphere paleoclimate records following a glacial-interglacial cyclicity. Ecologically well-constrained groups of diatoms record the glacial-interglacial changes in water masses dynamics, nutrient availability, and stratification of the upper ocean. The good match between the glacial maxima of total diatoms concentration, Chaetoceros spores abundance, and opal content with the maximum seasonal cover of Antarctic ice and the atmospheric dust records points to a dominant Southern Hemisphere forcing of diatom production. Suborbital variability of SST suggests rapid latitudinal migrations of the Subtropical Front and associated water masses over the southern Agulhas Plateau, following millennial contractions and expansions of the subtropical gyres. Warmings of the upper ocean over site MD02-2588 during terminations IV to I occurred earlier than that in the Antarctic Vostok, which is indicative of a Northern Hemisphere lead. Our multiparameter reconstruction highlights how high-latitude atmospheric and hydrographic processes modulated orbital highs and lows in primary production and SST as triggered by northward transport of Si, eolian dust input, and latitudinal migrations of frontal zones

    How many bird and mammal extinctions has recent conservation action prevented?

    Get PDF
    Aichi Target 12 of the Convention on Biological Diversity (CBD) aims to ‘prevent extinctions of known threatened species’. To measure its success, we used a Delphi expert elicitation method to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993 - 2020 (the lifetime of the CBD) and 2010 - 2020 (the timing of Aichi Target 12). We found that conservation prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and 2–7 mammal extinctions since 2010. Many remain highly threatened, and may still become extinct in the near future. Nonetheless, given that ten bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions

    Study protocol for a pragmatic randomised controlled trial in general practice investigating the effectiveness of acupuncture against migraine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migraine is a chronic neurologic disease that can severely affect the patient's quality of life. Although in recent years many randomised studies have been carried out to investigate the effectiveness of acupuncture as a treatment for migraine, it remains a controversial issue. Our aim is to determine whether acupuncture, applied under real conditions of clinical practice in the area of primary healthcare, is more effective than conventional treatment.</p> <p>Methods/Design</p> <p>The design consists of a pragmatic multi-centre, three-armed randomised controlled trial, complemented with an economic evaluation of the results achieved, comparing the effectiveness of verum acupuncture with sham acupuncture, and with a control group receiving normal care only.</p> <p>Patients eligible for inclusion will be those presenting in general practice with migraine and for whom their General Practitioner (GP) is considering referral for acupuncture. Sampling will be by consecutive selection, and by randomised allocation to the three branches of the study, in a centralised way following a 1:1:1 distribution (verum acupuncture; sham acupuncture; conventional treatment). Secondly, one patient in three will be randomly selected from each of the acupuncture (verum or sham) groups for a brain perfusion study (by single photon emission tomography). The treatment with verum acupuncture will consist of 8 treatment sessions, once a week, at points selected individually by the acupuncturist. The sham acupuncture group will receive 8 sessions, one per week, with treatment being applied at non-acupuncture points in the dorsal and lumbar regions, using the minimal puncture technique. The control group will be given conventional treatment, as will the other two groups.</p> <p>Discussion</p> <p>This trial will contribute to available evidence on acupuncture for the treatment of migraine. The primary endpoint is the difference in the number of days with migraine among the three groups, between the baseline period (the 4 weeks prior to the start of treatment) and the period from weeks 9 to 12. As a secondary aspect, we shall record the index of laterality and the percentage of change in the mean count per pixel in each region of interest measured by the brain perfusion tomography, performed on a subsample of the patients within the real and sham acupuncture groups.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN98703707.</p

    Measurement of the Production Rate of Charm Quark Pairs from Gluons in Hadronic Z0Z^{0} Decays

    Get PDF
    The rate of secondary charm-quark-pair production has been measured in 4.4 million hadronic Z0 decays collected by OPAL. By selecting events with three jets and tagging charmed hadrons in the gluon jet candidate using leptons and charged D* mesons, the average number of secondary charm-quark pairs per hadronic event is found to be (3.20+-0.21+-0.38)x10-2

    Production and processing of graphene and related materials

    Get PDF
    © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe
    corecore